

A.B.N 12 008 676 177

Registered Office & Head Office: Level 1, 401 Collins Street, Melbourne, Vic., 3000, GPO Box 2282U, Melbourne, Vic., 3001. Telephone (03) 9629 6888, Facsimile (03) 9629 1250 Email: <u>haoma@roymorgan.com</u> Website: www.haoma.com.au

October 31, 2013

Company Announcements Office Australian Stock Exchange Level 4, North Tower, Rialto 525 Collins Street MELBOURNE, VIC 3000

Dear Sir,

ACTIVITIES REPORT FOR THE QUARTER ENDED SEPTEMBER 30, 2013 – HIGHLIGHTS

- **Group Consolidated Result** Haoma Mining's unaudited consolidated financial result for the three months ended September 30, 2013 was a before tax loss of \$2.36 million after interest of \$0.79 million, depreciation and amortisation of \$0.05 million and group exploration, development and test work expenditure of \$1.41 million.
- **Bamboo Creek Test Work continued** Directors of Haoma Mining believe Bamboo Creek Tailings and Mt Webber ore contain **commercial quantities of PGM as well as gold and silver.** Furthermore the Bamboo Creek Plant is now capable of processing Bamboo Creek Tailings and Mt Webber ore to produce concentrates containing most of the PGM and gold/silver.

Results from recent laboratory tests in Australia and overseas have shown that a large proportion of the PGM and gold/silver measured in Bamboo Creek Tailings can be recovered at Bamboo Creek in an 'up-graded' concentrate.

Haoma has begun negotiations with overseas refiners to determine the most favourable terms for an 'off- take' agreement for the '**up-graded' Bamboo Creek Tailings Concentrate.**

The Bamboo Creek Plant has been re-configured so that it is now capable of processing test parcels of Bamboo Creek Tailings with a feed rate of about 14 tonnes an hour.

Test processing to date has produced a series of Bamboo Creek Tailings and Mt Webber Concentrate products which range in output from 4% to about 64% of the ore processed.

On the completion of test work Haoma will apply to the Department of Mines and Petroleum for a full operating licence to use the Bamboo Creek Plant to process the million tonnes of Bamboo Creek Tailings.

The costs of processing Bamboo Creek Tailings are now significantly lower than they were previously.

Haoma Directors believe the quantities of PGM and gold/silver measured in the samples reported confirm that it is now viable for processing operations to recommence at the Bamboo Creek Plant. This would be able to generate a significant income for Haoma once an off-take agreement has been finalised.

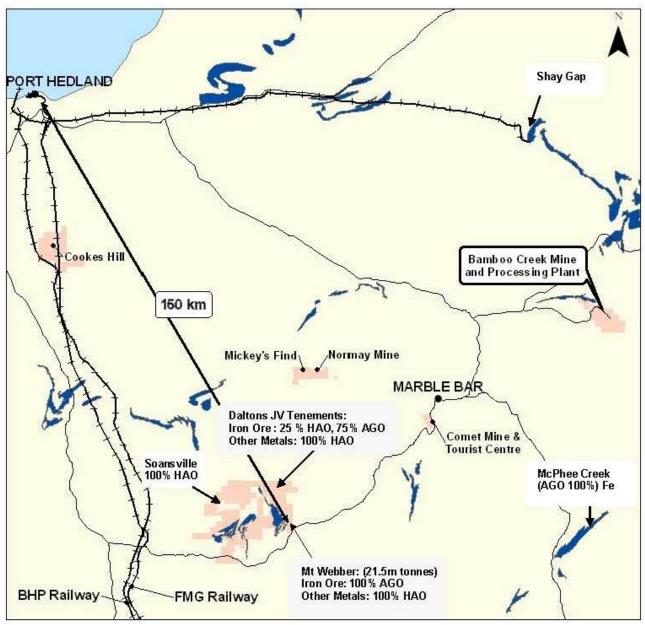
CONTENTS

- 1. Group Consolidated Result to September 30, 2013
- 2. Operations at Bamboo Creek and Normay, Western Australia.
- 3. Exploration Activities in Western Australia.
- 4. Exploration Activities in Queensland.

1. GROUP CONSOLIDATED RESULT TO SEPTEMBER 30, 2013

Haoma Mining NL Consolidated Profit & Loss	2012/13 1st Qtr (\$m)	2012/13 Full Year (\$m)	2013/14 1st Qtr (\$m)	2013/14 YTD (\$m)
Operating Revenue:	-	-	-	-
Royalties	0.09	0.35	-	-
Retail Sales & Misc.	0.06	0.17	0.06	0.06
Dividend Received	-	0.25	-	-
Finance Revenue	0.03	0.10	-	-
Other Income	0.01	0.02	0.01	0.01
Profit (Loss) on Sale of Assets	-	-	-	-
Operating Revenue	0.19	0.89	0.07	0.07
Operating profit (loss) before interest,				
depreciation, amortisation, exploration &				
development costs:	0.04	0.24	0.11	0.11
Interest	(0.88)	(3.46)	(0.79)	(0.79)
Depreciation & amortization	(0.06)	(0.19)	(0.05)	(0.05)
Exploration, development & test work	(1.16)	(4.90)	(1.41)	(1.41)
Operating (loss) before tax	(2.06)	(8.31)	(2.36)	(2.36)

1.1 Haoma's Group Consolidated Result


Haoma Mining's unaudited consolidated financial result for the three months ended September 30, 2013 was a before tax loss of \$2.36 million after interest of \$0.79 million, depreciation and amortisation of \$0.05 million and group exploration, development and test work expenditure of \$1.41 million.

1.2 Funding of Operations

At present, funding for Haoma's operations is being provided by The Roy Morgan Research Centre Pty Ltd, a company owned and controlled by Haoma's Chairman, Gary Morgan.

At September 30, 2013 the principal debt to The Roy Morgan Research Centre Pty Ltd was \$27.85 million. Haoma has approved payment of interest on this debt at the 30 day commercial bill rate plus a facility margin of 4%. Interest will accrue until such time as the Board determines that the company is in a position to commence interest payments. Interest accrued for the 3 months to September 30, 2013 was \$786,638. Total interest accrued and unpaid to September 30, 2013 is \$20.166 million.

2.0 RECENT ACTIVITIES AT BAMBOO CREEK

<u>Figure 1:</u> Location of Haoma Mining Projects including the location of Haoma's Bamboo Creek Processing Plant, North Pole Area (including Mickey's Find and Normay Mine), Cookes Hill, Daltons JV and the Comet Gold Mine and Tourist Centre.

2.1 <u>Test work at Bamboo Creek¹</u>

On October 9, October 18 and October 25 Haoma issued progress reports advising shareholders via ASX Releases that significant grades of Platinum Group Metals (PGM²) were measured in samples of Bamboo Creek Tailings and Mt Webber ore.

The information & data in Section 2 of this report as it relates to Metallurgical Results is based on information compiled by Mr. Peter Cole who is an expert in regard to this type of metallurgical test work. The results relate to testing the effectiveness of a new method of assaying for gold and other mineral content (the Refined Elazac *Assay* Method) and a new method for extraction of gold and other minerals from ore (the Refined Elazac *Extraction* Method). These methods are together referred to as the Elazac Process. The information reported relates solely to ongoing test work in relation to bringing the Elazac Process to commercial realisation. Mr. Cole has worked in the mining industry for over 30 years and has been associated with the development of the Elazac Process over a long period (approximately 15 years). Mr. Cole is one of only a few persons with sufficient relevant knowledge and experience to report results in relation to test work on the Refined Elazac *Assay* Method and Refined Elazac *Extraction* Method. Mr. Cole has consented to the inclusion in this report of the information and data in the form and context in which it appears.

² Platinum Group metals (PGM) are found in limited quantities in only a few locations around the world. They are 'strategic' metals with many industrial uses including medical, electronic and automotive industries.

Assays for 13 concentrate samples (See Tables 1a and 1b below) were received from one European Refiner. The latest 5 assay results, which again showed significant precious metal grades, are shown in blue.

In October 2012 previous Bamboo Creek Tailings Concentrate precious metal assays were conducted by the same European Refiner. They are shown in Table 2 below.

Directors of Haoma Mining believe Bamboo Creek Tailings and Mt Webber ore contain **commercial quantities of PGM as well as gold and silver.** Furthermore the Bamboo Creek Plant is now capable of processing Bamboo Creek Tailings and Mt Webber ore to produce concentrates containing most of the PGM and gold/silver.

Results from recent laboratory tests in Australia and overseas have shown that a large proportion of the PGM and gold/silver measured in Bamboo Creek Tailings can be recovered at Bamboo Creek in an 'up-graded' concentrate.

Haoma has begun negotiations with overseas refiners to determine the most favourable terms for an 'off- take' agreement for the '**up-graded' Bamboo Creek Tailings Concentrate.**

The PGM grades measured for the 13 different samples of Bamboo Creek Tailings and Mt Webber ore show higher PGM grades than previously reported. Gold grades from the European Refiner, with the exception of Bamboo Creek Sample 1 (107g/t gold), are all lower than previously assayed and reported to shareholders. (See following Tables 4 and 5, and Haoma February 25, 2013 ASX release. <u>http://www.asx.com.au/asxpdf/20130225/pdf/42d7rpvyxtv2gj.pdf</u>)

Haoma's Consultants have advised the Board as to why the European Refiner measured lower gold grades. They believe the gold grades capable of being recovered from Bamboo Creek Tailings and Mt Webber ore would be similar to those previously advised to shareholders. Previous gold grades were measured gravimetrically (by weight) which is a completely different method than used by the European Refiner (a specialist in refining PGM).

On September 30, 2013 and October 9, 2013 Haoma shareholders were advised of recent developments regarding processing Bamboo Creek Tailings using the Elazac Process.

The following summarises developments at Bamboo Creek since then:

- The Bamboo Creek Plant has been re-configured so that it is now capable of processing test parcels of Bamboo Creek Tailings with a feed rate of about 14 tonnes an hour.
- Test processing to date has produced a series of Bamboo Creek Tailings and Mt Webber Concentrate products which range in output from 4% to about 64% of the ore processed.
- On the completion of test work Haoma will apply to the Department of Mines and Petroleum for a full operating licence to use the Bamboo Creek Plant to process the million tonnes of Bamboo Creek Tailings.

The costs of processing Bamboo Creek Tailings are now significantly lower than they were previously.

The current Bamboo Creek Plant trial production costs are approximately \$650 an hour (about \$80 per tonne). The shipping costs for concentrate ore from the Bamboo Creek Plant to an overseas refiner is about \$300 per tonne.

Haoma Directors believe the quantities of PGM and gold/silver measured in the samples reported confirm that it is now viable for processing operations to recommence at the Bamboo Creek Plant. This would be able to generate a significant income for Haoma once an off-take agreement has been finalised.

	ond columns		ated Head G	<u>rade for PGN</u> 2013.	1 and gold/sil	ver for the		eleased to AS released to AS				
		<u>nboo</u> eek 1		<u>mboo</u> reek 2		<u>nboo</u> ek 3		<u>nboo</u> æk 4		<u>nboo</u> x 5&6+	<u>Bamboo</u> <u>Creek 7</u>	<u>Bamboo</u> <u>Creek 8&9*</u>
Sample size tested Concentrate as	250	0 kg	25	ö0kg	250	Okg	2	kg	2	kg	25 kg	10.8 kg
a % of sample	15.	78%	11.	.58%	8.6	6%	41.	18%	41.1	8%	100%	100%
	<u>European</u> <u>Refiner</u> <u>Concen-</u> <u>Trate</u> Assays	<u>Calculated</u> <u>Head</u> <u>Grade</u>	European <u>Refiner</u> <u>Concen-</u> <u>trate</u> Assays	<u>Calculated</u> <u>Head</u> Grade	<u>European</u> <u>Refiner</u> <u>Concen-</u> <u>trate</u> Assays	<u>Calculated</u> <u>Head</u> Grade	<u>European</u> <u>Refiner</u> <u>Concen-</u> <u>trate</u> <u>Assays</u>	<u>Calculated</u> <u>Head</u> <u>Grade</u>	European <u>Refiner</u> <u>Concen-</u> <u>trate</u>	<u>Calculated</u> <u>Head</u> Grade	<u>Head</u> <u>Grade,</u> <u>European</u> <u>Refiner</u> <u>Assays</u>	<u>Head</u> <u>Grade,</u> <u>European</u> <u>Refiner</u> <u>Assays</u> <u>Combined</u>
Gold/Silver &	<u>Assays</u>		Assays						Assays			
PGM grades	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t
Au #	689	107	260	21	540	47	100	41	53	22	34	15
Ag	370	58	400	47	290	25	110	45	58	24	78	295
Pt	1090	172	1200	141	1620	140	710	292	309	127	504	56
Pd	4840	763	4440	522	1810	157	800	329	564	232	448**	279
Ir	-	-	100	12	20**	2**	15**	6**	5	2	56	12
Ru Total gold / silver & PGM	370 7350	58 1198	1040 7440	122 875	10** 4260	1** 369	20** 1720	8** 707	29 1018	12 419	46 1066 **	55 712
Nickel grade Copper grade Zinc grade + Bamboo Creel	1790 380 1600	mple 4 was split	330 580 160**	senarately assaye	540 360** 320**	results are show	950 490 460		286 - -		650 360** 290**	896 319** 419**

Bamboo Creek Concentrate sample 4 was split into 2 parts and separately assayed, the combined results are shown. $^+$

Bamboo Creek ore sample 7 was split into 2 parts and separately assayed, the combined results are shown. *

Released to ASX October 31, 2013 **

Gold grades from the European Refiner, with the exception of Bamboo Creek Sample 1 (107g/t gold), are all lower than previously assayed and reported to shareholders. (See Haoma's February 25, 2013 # release. http://www.asx.com.au/asxpdf/20130225/pdf/42d7rpvyxtv2gj.pdf) Haoma's Consultants have advised the Board as to why the European Refiner measured lower gold grades. They believe the gold grades capable of being recovered from Bamboo Creek Tailings and Mt Webber ore would be similar to those previously advised to shareholders. Previous gold grades were measured gravimetrically (by weight) which is a completely different method than used by the European Refiner (a specialist in refining PGM).

Table 1b: Mt Webber Concentrate Assays.

'red', released to ASX Oct 18, 2013 (Second columns show calculated Head Grade for PGM and gold/silver for the ore samples) -'blue', released to ASX Oct 25, 2013 **Tests conducted October 2013.**

	Mt We	ebber <u>1</u>	Mt Webber 2	<u>Mt Wel</u>	<u>bber 3*</u>	<u>Mt We</u>	bber 4*
Sample size tested Concentrate as a % of	15	kg	1 kg	21	kg	2	kg
sample - Mt Webber	4.1	7%	82.86%	28.	2%	28.	2%
	<u>European</u> <u>Refiner</u> <u>Concentrate</u> <u>Assays</u>	<u>Calculated</u> Head Grade	<u>European Refiner</u> <u>Assays used to</u> <u>Calculate Head</u> <u>Grade</u>	<u>European</u> <u>Refiner</u> <u>Concentrate</u> <u>Assays</u>	<u>Calculated</u> <u>Head</u> <u>Grade</u>	<u>European</u> <u>Refiner</u> <u>Concentrate</u> <u>Assays</u>	<u>Calculated</u> <u>Head</u> <u>Grade</u>
<u>Gold/Silver &</u> PGM grades	g/t	g/t	g/t	g/t	g/t	g/t	g/t
Au #	100	4	-	-	-	-	-
Ag	340	14	-	-	-	-	-
Pt	600	25	97	1060	291	1010	203
Pd	2050	85	200	410	116	330	66
Ir	150	6	-	-	-	-	-
Ru Total gold/silver	-	-	-	-	-	-	-
& PGM	3240	134	297	1470	407	1340	269
Nickel grade Copper grade Zinc grade	6320 15100 2490		- - -	- - -			

Same Mt Webber ore sample, different processes used to measure PGM. *

Gold grades from the European Refiner, with the exception of Bamboo Creek Sample 1 (107g/t gold), are all lower than previously assayed and reported to shareholders. (See Haoma's February 25, 2013 # release. http://www.asx.com.au/asxpdf/20130225/pdf/42d7rpvyxtv2gj.pdf) Haoma's Consultants have advised the Board as to why the European Refiner measured lower gold grades. They believe the gold grades capable of being recovered from Bamboo Creek Tailings and Mt Webber ore would be similar to those previously advised to shareholders. Previous gold grades were measured gravimetrically (by weight) which is a completely different method than used by the European Refiner (a specialist in refining PGM).

Develop Court	Sam	<u>ple 1</u>	Samp	<u>ole 2</u>	Samp	<u>le 3</u>	Sample 4
Bamboo Creek Tailings sample size Concentrate as	70	kg	70 1	kg	75 k	g	305kg
a % of tailings sample	13.4	1%	12.2	2%	2.34	%	4.0%
1	<u>European</u> <u>Refiner</u> <u>Assays</u>	<u>Aust.</u> <u>Lab</u> Assays	<u>European</u> <u>Refiner</u> <u>Assays</u>	<u>Aust.</u> Lab Assays	<u>European</u> <u>Refiner</u> <u>Assays</u>	<u>Aust.</u> <u>Lab</u> Assays	<u>Aust.</u> <u>Lab</u> Assays
<u>Gold/silver &</u> <u>PGM grades</u>	g/t	g/t	g/t	g/t	g/t	g/t	g/t
Au #	80	431 Not	100	342	40	1,021	433
Ag	150	measured	90	264	130	77	382
Pt	560	421	450	312	470	32	29
Pd	520	323	500	199	810	-	-
Ir	40	22	20	20	90	-	-
Rh	50	-	120	-	10	-	-
Total gold & PGM	1250	1197	1190	873	1430	1053	462
& FGM Nickel grade Copper grade Zinc grade	1250 4700 1300** 100**	4080 830** 22**	1190 4450** 950** 50**	875 3698 678** 23**	1430 7630 1200** 100**	1055 5913 1125** 31**	462 9228 1631** 60**

Table 2: Bamboo Creek Tailings Concentrate^[1] Assays (Tests conducted October 2012)

Samples 1 and 2 are the same Bamboo Creek Tailing Concentrate plus a 'Middling Concentrate' fraction. **Sample 3** is a Bamboo Creek Tailings Concentrate sample which was acid digested (HCL) before assaying. No 'Middling Concentrate' fraction was added.

Sample 4 was a Bamboo Creek Tailings Concentrate sample which was **NOT** acid digested (HCL) before assaying. No 'Middling Concentrate' fraction was added.

- ** Released to ASX October 31, 2013
- # Gold grades from the European Refiner are all lower than assayed by an Australian Laboratory. Haoma's Consultants have advised the Board as to why the European Refiner measured lower gold grades. They believe the gold grades capable of being recovered from Bamboo Creek Tailings and Mt Webber ore would be similar to those previously advised to shareholders. Previous gold grades were measured gravimetrically (by weight) which is a completely different method than used by the European Refiner (a specialist in refining PGM).

Explanation: In previous Haoma Reports the Australian Laboratory Assays results for Sample 1 were incorrectly listed for Sample 2; while the Australian Laboratory Assays results for Sample 2 were incorrectly listed for Sample 1. The above Australian Laboratory Assays results are now correct.

The above results are important because Samples 1 and 2 were duplicate assay tests conducted in October 2012 by a **European Refiner**. The **Australian Laboratory Assays** were repeat assay tests with the same samples using similar assay methods. The repeat assays by the Australian Laboratory measured fairly similar PGM grades but much higher gold grades (See # note above).

^{1.} The information & data in Section 2 of this report as it relates to Metallurgical Results is based on information compiled by Mr. Peter Cole who is an expert in regard to this type of metallurgical test work. The results relate to testing the effectiveness of a new method of assaying for gold and other mineral content (the Refined Elazac *Assay* Method) and a new method for extraction of gold and other minerals from ore (the Refined Elazac *Assay* Method). These methods are together referred to as the Elazac Process. The information reported relates solely to ongoing test work in relation to bringing the Elazac Process to commercial realisation. Mr. Cole has worked in the mining industry for over 30 years and has been associated with the development of the Elazac Process over a long period (approx. 15 years). Mr. Cole is one of only a few persons with sufficient relevant knowledge and experience to report results in relation to test work on the Refined Elazac *Assay* Method and Refined Elazac *Extraction* Method. Mr. Cole has consented to the inclusion in this report of the information and data in the form and context in which it appears.

Figure 2: Bamboo Creek Plant, Bamboo Creek Valley and Bamboo Creek Range (on right) which contains gold mineralisation

Area Sampled	Sample Description	Gold Assays by Traditional	'Calculated' Grade usin Elazac Assa	g Refined	Gı	inum coup s (PGM)
		Method	Au g/t		Pt g/t	Pd g/t
Bamboo Creek Tailings	Trial 1: Sample size 50 kg	0.3 g/t	Note: * = Partial Assay	7.35*	0.00	11.24
Bamboo Creek Tailings	Trial 2: Sample size 3 kg	0.3 g/t	Note: * = Partial Assay	0.59*	0.00*	2.15*
1.Bamboo Creek Tailings	Trial 491: Sample size 70 kg	0.3 g/t		142.03	Not measured	Not measured
2.Bamboo Creek Tailings	Trial 514: Sample size 70 kg	0.3 g/t		98.38	55.59	61.77
3.Bamboo Creek Tailings	Trial 520: Sample size 70 kg	0.3 g/t		74.37	75.12	69.75

Table 3: Bamboo Creek Tailings Assays - gold measured gravimetrically (by weight)

Note 1: An independent laboratory measured the PGM grades after acid digestion of samples produced by the Elazac Process. The metals in solutions were then measured by ICP.

<u>Table 4:</u> Mt Webber Drill Hole and Soansville - Significant grades of Platinum Group Metals (PGM) measured by ICP are shown in Sections 2, 4, 5 & 6 - gold measured gravimetrically (by weight)

(by weight) Area Sampled	Sample Description	Gold Assay by Traditional	Area Sample by Grade using Refined Elazac mpled Description Traditional Assay Method ^[*]				'Calculated' Platinum Group Metals (PGM)Head Grade			
		Method		Au g/t	Ag g/t	Pt g/t	Pd g/t	Ir g/t		
1. Daltons/Soansville: Reported December 2008	17 drill chip samples, over 21.8 metres from 3 drill holes	0.059g/t	Leached Trial grade Tail grade: 'Calculated' gold	0.176 76.09 76.0+						
2. Daltons/Mt Webber May-July 2011 (Samples from diamond drill hole: RDDW002 location East	Sample sizes: 20-90 kg	0.08 g/t	Head grade Bamboo Creek Lab	4.5 5.0 17.0 75+						
738955.19, North 7617235.26, Dip/Azim -90/0 & RDDW003 location East 739163.67,			Independent Lab # Partial assay	4.5# 7.5# 31+ & 9		0.00 0.00 0.00	0.00 0.00 0.00	4.5 0.00 8.5		
North 7617445.42, Dip/Azim -90/0)			ALS	80+						
3. Daltons/Mt Webber Sept./Oct. 2011 (Sample from approximately 20 meters of RC drill hole RCDW029; location East 739160, North 7617447, Dip/Azim -60/90)	Sample size: 3a: 1.835 kg 3b: 10 kg	0.08 g/t	3a:Independent Lab 3b:Independent Lab	62.3 71.3						
4. Daltons/Mt Webber Jan - April 2012 results updated (First reported April 28, 2012) (Sample from approximately 20 meters of RC drill hole RCDW029; location East 739160, North 7617447, Dip/Azim -60/90)	Trials 1- 3: Sample sizes each 1 kg	0.08 g/t	Independent Lab recovered gold & PGM with acids & gold gravimetrically Trial 1 Trial 2 Trial 3	84.93 32.81 20.73		0.00 0.00 0.00	0.00 0.00 0.00	0.00 1.16 2.86		
5. Daltons/Mt Webber April - June 2012 (Sample from approximately 20 meters of RC drill hole RCDW029; location East 739160, North 7617447, Dip/Azim -60/90)	Trial 4: Sample size 1.1 kg Trial 5: Sample size:1.5 kg Trial 6: Sample size 2 kg Trial 7: Sample size 1 kg Trial 8: Sample size 50 kg		Trial 4 Trial 5 Trial 6 Trial 7 Trial 8	2.98 31.24 388.08 72.38 20.88		0.00 0.00 8.87 12.09 0.00	0.00 0.00 7.88 21.40 0.00	5.24 4.32 0.00 0.00 0.00		
6. Mt Webber January/February 2013 (Sample from Drill Holes, RCDW 03, RCDW 28 and RCDW 56)	Trial 9 Sample size 31.835 kg	0.08 g/t	Trial 9	44.67	55.55	32.08	-	-		

* <u>Note 2:</u> Table 4 above includes the previously reported (July 31, 2011) high-grade gold results obtained from Daltons/Mt Webber samples. On September 2, 2011 shareholders were advised that repeat gold assays obtained similar high gold grades as indicated by '+'.

3. <u>EXPLORATION AND EVALUATION ACTIVITIES IN WESTERN AUSTRALIA</u>

As part of the ongoing examination of geological setting and mineralisation styles, particularly in the context of the Haoma's metallurgical test work program, exploration within tenements operated by Haoma in the East Pilbara Mineral Field is currently focused on locating iron-rich lithologies and mineralised zones.

3.1 <u>Bamboo Creek Tenement Group - M45/481, M45/480, M45/16, M45/411, M45/874, E45/2982,</u> E45/3217, E45/4117, P45/2227, P45/2242, P45/2244, P45/2301, P45/2329, P45/2330, P45/2336, P45/2342

3.1.1 <u>5 Mile Hill Area (E45/3217)</u>

Evaluation of the area in the vicinity of 5 Mile Hill is ongoing. The program aims to explore the potential for Platinum Group Metals (PGM), Gold (Au) and Nickel (Ni) mineralisation in the area.

A stream sediment program in 1993/1994 recorded anomalous gold concentrations in the drainage system of the area. Re-evaluation of these anomalies has commenced with inclusion of a solvent extraction step in the assay process to address the influence of iron content on readable gold, particularly in whole rock samples.

During the September Quarter ninety one rock chip samples were collected in the area, 5M-13-001 to 5M-13-001 091 (See Figure 3 and Figure 4).

Assay results indicated low grade gold and silver mineralisation in numerous rock chip samples in the five areas tested. Variability between results of direct read and solvent extraction (DIBK) assay methods has initiated validation testing in the laboratory for gold/silver and PGM. Results are pending.

Further review and exploration is planned to determine the nature, continuity and extent of mineralisation in the 5 Mile Area.

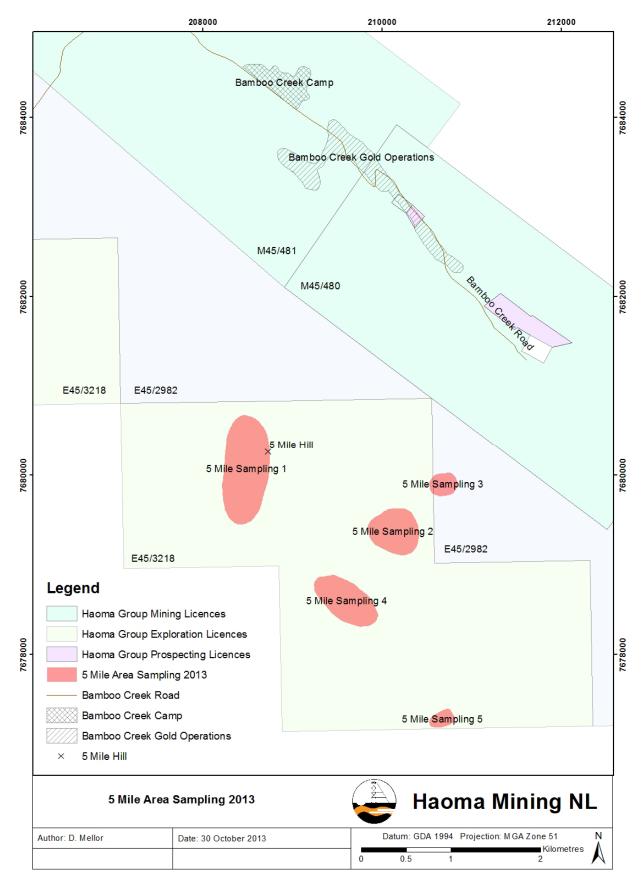


Figure 3: 5 Mile Area Sampling 2013

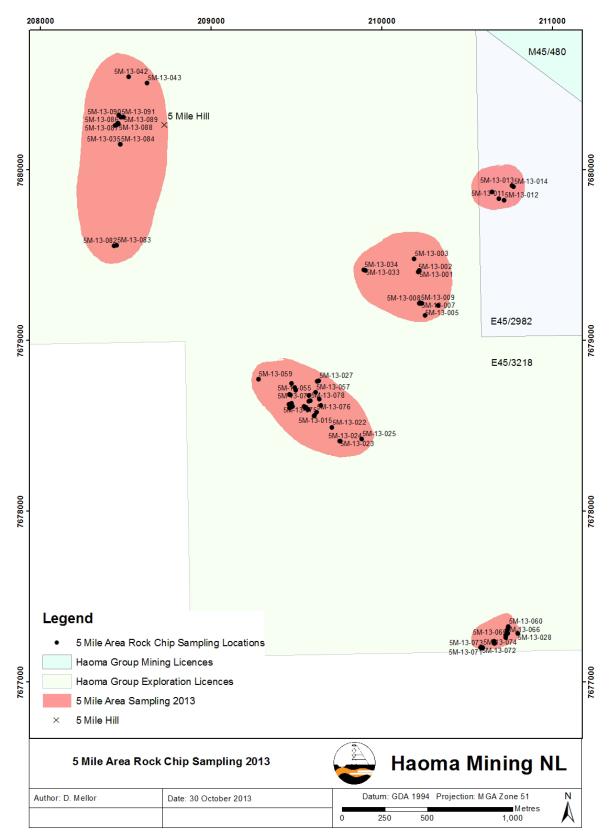


Figure 4: 5 Mile Area Rock Chip Sampling Locations

Sample ID	East	North	Tenement	Au g/t	Au g/t Duplicate	Ag g/t	Ag g/t Duplicate
5M-13-001	210220	7679411	E45/3217	0.00	-	0.02	-
5M-13-002	210218	7679417	E45/3217	0.43	-	0.02	-
5M-13-003	210190	7679480	E45/3217	0.00	-	0.02	-
5M-13-004	210332	7679208	E45/3217	0.03	-	0.01	-
5M-13-005	210253	7679150	E45/3217	0.07	-	0.01	-
5M-13-006	210235	7679219	E45/3217	0.01	-	0.01	-
5M-13-007	210231	7679219	E45/3217	0.06	-	0.01	-
5M-13-008	210221	7679221	E45/3217	0.02	-	0.02	-
5M-13-009	210227	7679224	E45/3217	0.11	-	0.01	-
5M-13-010	210648	7679873	E45/2982	0.14	-	0.01	-
5M-13-011	210687	7679833	E45/2982	0.12	-	0.01	-
5M-13-012	210718	7679822	E45/2982	0.03	-	0.01	-
5M-13-013	210763	7679908	E45/2982	0.09	-	0.01	-
5M-13-014	210772	7679904	E45/2982	0.15	-	0.01	-
5M-13-015	209606	7678561	E45/3217	0.04	-	0.01	-
5M-13-016	209555	7678608	E45/3217	0.06	-	0.01	-
5M-13-017	209572	7678596	E45/3217	0.07	-	0.02	-
5M-13-018	209553	7678608	E45/3217	0.04	-	0.02	-
5M-13-019	209643	7678622	E45/3217	0.03	-	0.03	-
5M-13-020	209553	7678608	E45/3217	0.82	-	0.02	-
5M-13-021	209558	7678609	E45/3217	0.04	-	0.02	-
5M-13-022	209709	7678490	E45/3217	0.04	-	0.05	-
5M-13-023	209756	7678411	E45/3217	0.03	-	0.02	-
5M-13-024	209757	7678411	E45/3217	0.01	-	0.02	-
5M-13-025	209884	7678423	E45/3217	0.07	-	0.03	-
5M-13-026	209623	7678763	E45/3217	1.36	-	0.25	-
5M-13-027	209632	7678767	E45/3217	0.40	-	0.07	-
5M-13-028	210796	7677285	E45/3217	0.02	-	0.04	-
5M-13-029	210732	7677288	E45/3217	0.02	-	0.02	-
5M-13-030	210738	7677284	E45/3217	0.03	-	0.00	-
5M-13-031	210586	7677201	E45/3217	0.04	-	0.01	-
5M-13-032	210656	7677237	E45/3217	0.03	-	0.01	-
5M-13-033	209905	7679412	E45/3217	0.04	-	0.01	-
5M-13-034	209896	7679417	E45/3217	0.04	-	0.03	-
5M-13-035	208470	7680152	E45/3217	2.85	-	0.00	-
5M-13-036	208459	7680273	E45/3217	0.03	-	0.00	-
5M-13-037	208457	7680271	E45/3217	0.17	-	0.00	-
5M-13-038	208451	7680266	E45/3217	0.04	-	0.00	-
5M-13-039	208461	7680323	E45/3217	0.00	-	0.00	-
5M-13-040	208474	7680311	E45/3217	0.00	-	0.00	-
5M-13-041	208474	7680309	E45/3217	0.00	-	0.00	-
5M-13-042	208518	7680547	E45/3217	0.00	-	0.00	-
5M-13-043	208628	7680511	E45/3217	0.00	-	0.00	-
5M-13-044	209461	7678686	E45/3217	0.00	-	0.00	-
5M-13-045	209466	7678683	E45/3217	0.00	-	0.00	-
5M-13-046	209459	7678627	E45/3217	0.00	-	0.00	-
5M-13-047	209471	7678631	E45/3217	0.00	-	0.00	-
5M-13-048	209473	7678634	E45/3217	0.01	-	0.00	-
5M-13-049	209473	7678628	E45/3217	0.00	-	0.00	-
5M-13-050	209479	7678616	E45/3217	0.00	-	0.01	-
5M-13-051	209545	7678617	E45/3217	0.01	-	0.00	-
5M-13-052	209497	7678709	E45/3217	0.00	-	0.00	-
5M-13-053	209492	7678727	E45/3217	0.00	-	0.00	-

Table 5: 5 Mile Area Rock Chip Sampling, ALS Assay Results

Sample ID	East	North	Tenement	Au g/t	Au g/t Duplicate	A g g/t	Ag g/t Duplicate
5M-13-054	209460	7678607	E45/3217	0.00	Duplicate	Ag g/t 0.00	Duplicate
5M-13-055	209400	7678751	E45/3217 E45/3217	0.00	-	0.00	-
		7678679	E43/3217 E45/3217	0.00	-	0.00	-
5M-13-056	209573						
5M-13-057	209615	7678698	E45/3217	0.00	-	0.00	-
5M-13-058	209636	7678658	E45/3217	0.00	-	0.00	-
5M-13-059	209278	7678776	E45/3217	0.00	-	0.00	-
5M-13-060	210225	7679223	E45/3217	1.01	0.84	0.06	0.09
5M-13-061	210231	7679219	E45/3217	0.05	-	0.01	-
5M-13-062	210226	7679221	E45/3217	0.01	-	0.01	-
5M-13-063	210742	7677324	E45/3217	0.15	-	0.00	-
5M-13-064	210739	7677314	E45/3217	0.02	0.02	0.01	0.01
5M-13-065	210734	7677301	E45/3217	0.02	-	0.00	-
5M-13-066	210731	7677285	E45/3217	0.04	-	0.00	-
5M-13-067	210728	7677273	E45/3217	0.04	-	0.01	-
5M-13-068	210726	7677262	E45/3217	0.04	-	0.01	-
5M-13-069	210729	7677277	E45/3217	0.04	0.03	0.01	0.01
5M-13-070	210659	7677239	E45/3217	0.02	-	0.01	-
5M-13-071	210659	7677228	E45/3217	0.03	-	0.01	-
5M-13-072	210663	7677227	E45/3217	0.04	-	0.01	-
5M-13-073	210578	7677203	E45/3217	0.05	-	0.01	-
5M-13-074	210584	7677203	E45/3217	0.06	0.05	0.00	0.01
5M-13-075	210586	7677199	E45/3217	0.06	-	0.01	-
5M-13-076	210591	7677198	E45/3217	0.08	-	0.02	-
5M-13-077	210591	7677203	E45/3217	0.09	-	0.02	-
5M-13-078	209608	7678562	E45/3217	0.07	-	0.01	-
5M-13-079	209619	7678583	E45/3217	0.12	0.06	0.01	0.01
5M-13-080	209575	7678646	E45/3217	2.17	-	0.01	-
5M-13-081	209584	7678650	E45/3217	0.00	-	0.01	-
5M-13-082	208434	7679557	E45/3217	0.02	-	0.00	-
5M-13-083	208448	7679561	E45/3217	0.02	-	0.00	-
5M-13-084	208470	7680150	E45/3217	7.93	-	0.01	-
5M-13-085	208440	7680261	E45/3217	0.07	-	0.02	_
5M-13-086	208450	7680265	E45/3217	0.04	_	0.01	-
5M-13-087	208456	7680273	E45/3217	0.22	-	0.01	-
5M-13-088	208458	7680273	E45/3217	0.14	-	0.03	_
5M-13-089	208489	7680309	E45/3217	0.07	-	0.01	-
5M-13-090	208474	7680311	E45/3217 E45/3217	0.07	-	0.02	-
5M-13-090	208474	7680311	E45/3217 E45/3217	0.07	-	0.02	-

3.2 <u>Marble Bar Tenement Group – M45/672, M45/679, M45/682, M45/521, E45/1249, E45/4061, E45/4069, E45/4071, E45/4072</u>

3.2.1 Fieldings Gully (M45/521, E45/1249)

Current exploration within the Fieldings Gully Prospect (M45/521 and E45/1249) is testing mineralisation in the locally **iron-rich outcrops** on Fieldings Ridge.

The Fieldings Gully Prospect lies 15 kilometres south of the Marble Bar township. Eighteen rock chip samples were collected from a chert and ironstone ridge west of the abandoned Fieldings Gully Mine (Figure 5).

Zones of iron enriched rock were identified and selectively sampled over approximately 1.5km strike, dipping near vertical to steeply north, ranging up to 10m true width. Sixteen of the samples (1249-13-001 to 013 and 1249-13-016 to 018) were characterized with significant iron content and submitted ALS Minerals in Perth for multi-element analysis by High Grade Four Acid ICP – AES (M-ICP61a) and Ore Grade Pt, Pd and Au by ICP (PGM-ICP27). Samples 1249-13-014 and 015 were not submitted to ALS Minerals as they were collected from silicified chloritic schist material and not considered representative of the target iron enriched zones.

Assay results of elemental analysis for copper (Cu), iron (Fe), nickel (Ni), zinc (Zn), gold (Au) and silver (Ag) are listed in Table 6.

Iron concentrations exceeding 40% were reported in 10 of 16 rock chip samples submitted to ALS Minerals.

Lab sample number 70616 (1249-13-016) returned significant gold concentrations of 63.9g/t Au (8.20g/t Au check) in the PGM-ICP27 assay. The variation in these results indicates the presence of coarse gold.

Anomalous nickel (Ni) values were returned in several samples;

- lab sample number 70603 (1249-13-003) 7350ppm Ni (0.7% Ni)
- lab sample number 70608 (1249-13-008) 2960ppm Ni (0.3% Ni)
- lab sample number 70609 (1249-13-009) 4100ppm Ni (0.4% Ni)
- lab sample number 70611 (1249-13-011) 3090ppm Ni (0.3% Ni)
- lab sample number 70617 (1249-13-017) 2760ppm Ni (0.3% Ni)

These samples were collected from 3 of the 5 zones indicating anomalous Ni content associated with iron enrichment.

The full suite of elements analysed are not listed in Table 6 as the results are below concentrations considered to be anomalous in the context of this exploration program.

The information and data in Sections 3 of this report that relates to Exploration Results is based on information compiled by Mr David Mellor who is a full-time employee of the Company and is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Mellor has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2004 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Mellor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

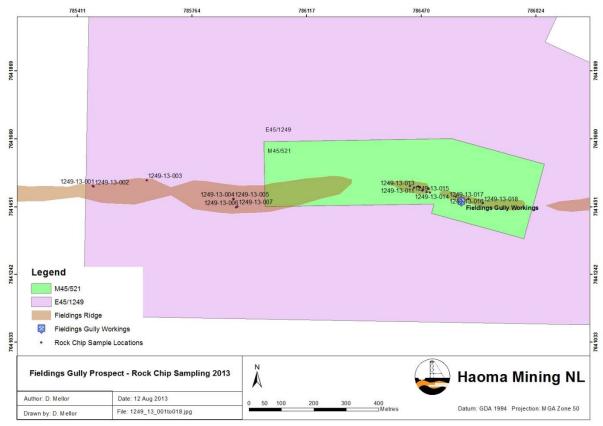


Figure 5: Fieldings Gully Rock Chip Sampling 2013

											~							
			1249-	Rock Chip Sample ID 1249-												1249-13-		
			13-001	13-002	13-003	13-004	13-005	13-006	13-007	13-008	13-009	13-010	13-011	13-012	13-013	13-016	13-017	018
				Lab Sample ID														
			70601	70602	70603	70604	70605	70606	70607	70608	70609	70610	70611	70612	70613	70616	70617	70618
ALS Assay Method **	Element Analysed	Scale																
ME-ICP61a	Al	%	0.72	1.11	1.17	0.59	1.02	0.59	0.32	0.64	0.6	0.36	0.46	0.6	0.6	0.82	0.75	0.81
ME-ICP61a	As	ppm	1460	3000	1230	1940	1180	3360	4860	2120	2920	4140	3220	2840	4490	440	4010	2080
ME-ICP61a	Ca	%	1.15	0.09	0.08	< 0.05	0.05	0.05	0.07	0.81	< 0.05	0.07	0.08	< 0.05	0.87	0.3	0.06	0.13
ME-ICP61a	Cu	ppm	20	110	210	460	310	280	190	1010	730	860	690	1950	890	540	400	250
ME-ICP61a	Co	ppm	130	60	640	80	90	90	110	160	60	70	120	30	130	50	350	110
ME-ICP61a	Cr	ppm	900	1470	220	1250	1470	1440	2180	1110	1250	1300	740	2680	3180	5460	1540	1380
ME-ICP61a	Fe	%	19.3	31.7	42.3	41.7	35.2	45.3	>50	42.3	44.9	45.8	>50	45.8	47.2	26.5	36.7	30.7
ME-ICP61a	Mg	%	1.17	0.09	0.6	< 0.05	0.09	0.06	0.08	0.32	0.06	< 0.05	0.06	0.08	0.1	0.18	0.07	0.13
ME-ICP61a	Mn	ppm	16150	610	5300	740	2690	1230	910	1140	380	360	640	210	550	200	29400	560
ME-ICP61a	Na	%	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
ME-ICP61a	Ni	ppm	1750	850	7350	1450	1470	2020	870	2960	4100	2100	3090	2160	2510	1670	2760	1930
ME-ICP61a	Р	ppm	2950	750	1040	950	1240	1050	1440	750	1500	860	630	1500	1180	780	1410	860
ME-ICP61a	Pb	ppm	60	210	30	<20	<20	<20	20	60	140	40	150	40	40	70	150	<20
ME-ICP61a	Zn	ppm	190	120	120	230	240	320	390	440	340	420	450	280	450	330	360	380
PGM-ICP27	Au	g/t	<0.03	0.06	0.06	<0.03	<0.03	<0.03	<0.03	0.1	0.22	0.06	0.11	0.38	0.61	63.9	0.03	0.03
PGM-ICP27	Au Check	g/t														8.2		
ME-ICP61a	Ag	g/t	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	3	4	<1

<u>Table 6:</u> Fieldings Gully Prospect - Rock Chip Sampling June/July 2013

**Note: ALS Analytical Procedures

ALS Code	Description	Instrument
PGM-ICP27	Ore grade Pt, Pd and Au by ICP	ICP-AES
ME-ICP61a	High Grade Four Acid ICP-AES	ICP-AES

3.2.2 Blue Bar Area (South of Marble Bar)

The **Blue Bar Project** consists of seven tenements located approximately 25 km south of Marble Bar, Figure 6. The geology of the area is dominated by greenstones of the Coongan Syncline. Gold mineralisation is associated with the Blue Bar Shear Zone which hosts numerous old workings and the currently inactive Blue Bar Mine. The Blue Bar Shear Zone extends north to south through the project tenements for approximately 7 km. Continuity and style of mineralisation within the shear zone and in parallel structures is being tested in the current phase of exploration.

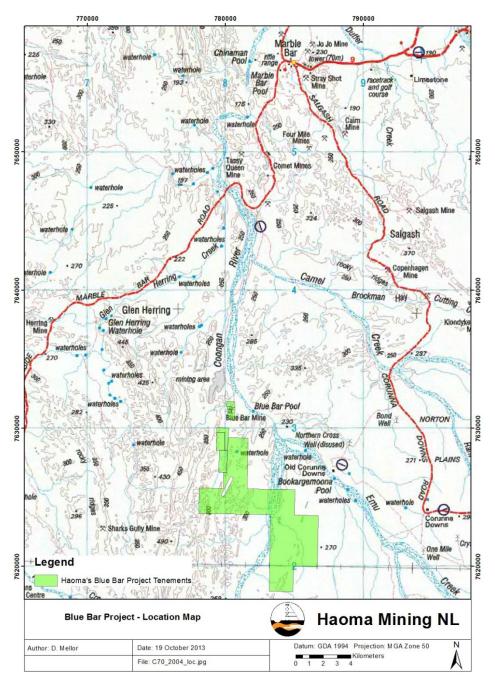


Figure 6: Blue Bar Group Location Map

Surface reconnaissance and rock chip sampling commenced within E45/3942. Nine rock chip samples, 3942-13001 to 009 (Figure 6), were collected from outcrop identified as iron-rich along a 400m ridge parallel to the Blue Bar Shear Zone, results Table 7. Sample 3942-13-005 consisted of altered basalt bearing iron oxide and weathered sulphide mineralisation, mostly pyrite. The anomalous gold concentration of 0.60g/t (mean) in 3942-13-005 requires follow up sampling to evaluate the extent of gold mineralisation in the area.

						Au g/t
Sample ID	East	North	Tenement	Location	Au g/t	Duplicate
				Blue Bar		
3942-13-001	779752	7623940	E45/3942	South	0.00	
				Blue Bar		
3942-13-002	779750	7624039	E45/3942	South	0.06	
				Blue Bar		
3942-13-003	779754	7624046	E45/3942	South	0.04	
				Blue Bar		
3942-13-004	779761	7624063	E45/3942	South	0.07	
				Blue Bar		
3942-13-005	779772	7624063	E45/3942	South	0.67	0.53
				Blue Bar		
3942-13-006	779784	7624111	E45/3942	South	0.04	
				Blue Bar		
3942-13-007	779781	7624160	E45/3942	South	0.03	
				Blue Bar		
3942-13-008	779754	7624322	E45/3942	South	0.05	
				Blue Bar		
3942-13-009	779756	7624323	E45/3942	South	0.06	

Table 7: Blue Bar E45/3942 Rock Chip Sampling 2013

Fieldwork was undertaken to further test extension to the mineralisation at **Blue Bar Mine**. Five rock chip samples, BB-13-001 to BB-13-005, were collected over a 50m strike length in an area approximately 500m south of the Blue Bar open pit, Figure 7. Three samples, BB-13-001 to BB-12-003 of gossanous altered basalt returned anomalous gold concentrations (See Table 8). Detailed sampling will be undertaken to determine continuity of gold mineralisation between this zone and the Blue Bar workings.

Sample ID	East	North	Tenement	Location	Au g/t	Au g/t Duplicate
BB-13-001	780346	7630722	M45/591	Blue Bar	0.97	0.96
BB-13-002	780343	7630718	M45/591	Blue Bar	1.87	2.02
BB-13-003	780344	7630722	M45/591	Blue Bar	1.10	1.57
BB-13-004	780326	7630688	M45/591	Blue Bar	0.00	
BB-13-005	780335	7630670	M45/591	Blue Bar	0.02	

Table 8: Blue Bar M45/591 Rock Chip Sampling 2013

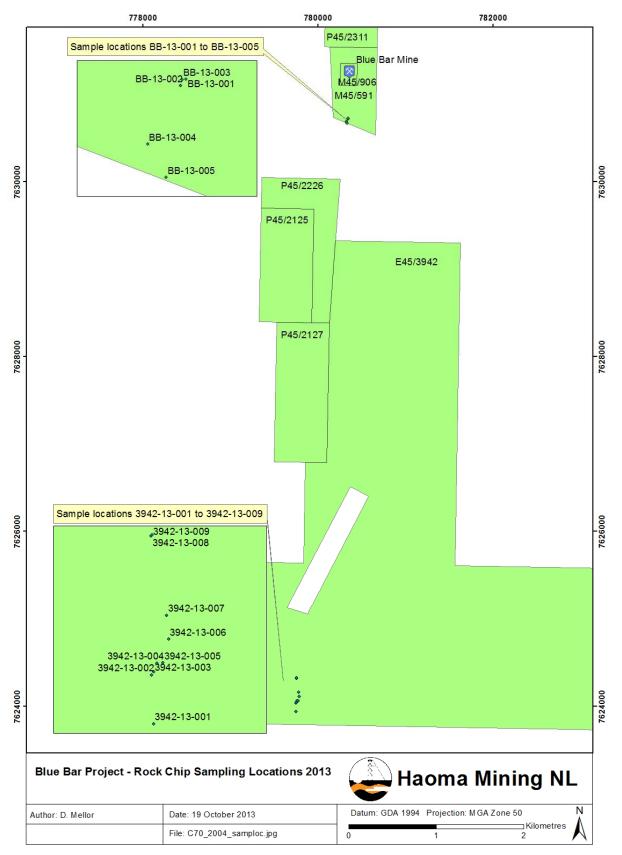


Figure 7: Blue Bar Group Rock Chip Sampling Locations 2013

3.4 <u>Cookes Hill (E45/2983 (previously E45/1562), M45/1005, M45/1031-1036) - Including BGC</u> <u>Tribute Agreement to Mine Dolerite from Haoma's Cookes Hill Quarry</u>

The Haoma Quarry at Cookes Hill is operated by BGC Contracting Pty Ltd. BGC Contracting mine and crush dolerite aggregate which is then supplied to customers for infrastructure construction including new railway lines in the Pilbara.

Haoma receives a royalty of \$0.82c per tonne for railway ballast and \$0.44c per tonne for byproduct. During the Quarter 6,974 tonnes of ballast and by-product rock were mined from the Cookes Hill Quarry and Haoma earned royalties of \$3,653.

Yours sincerely,

Many Moregon

Gary C Morgan, CHAIRMAN

Appendix 5B

Rule 5.3

Mining exploration entity quarterly report

Introduced 1/7/96. Origin: Appendix 8. Amended 1/7/97, 1/7/98, 30/9/2001.

Name of entity

HAOMA MINING NL

ABN

12 008 676 177

Quarter ended ("current quarter")

30th September 2013

Consolidated statement of cash flows

0011			
Cash flows related to operating activities		Current quarter \$A'000	3 months to Sept 30, 2013 \$A'000
1.1	Receipts from product sales and related debtors	61	160
1.2	Payments for: (a) exploration, evaluation and development	(1,056)	(731)
	(b) production		
1.3	(c) administration Dividends received	(215)	(383)
1.5 1.4	Interest and other items of a similar nature		27
1.4	received		21
1.5	Interest and other costs of finance paid	(6)	(6)
1.6	Income taxes paid		
1.7	Other (provide details if material)		
	Net Operating Cash Flows	(1,216)	(933)
	Cash flows related to investing activities		
1.8	Payment for purchases of:(a)prospects	(8)	
	(b)equity investments		
	(c) other fixed assets	(28)	(59)
1.9	Proceeds from sale of:(a)prospects		· · ·
	(b)equity investments		
	(c)other fixed assets		
1.10	Loans to other entities		
1.11	Loans repaid by other entities		
1.12	Other (provide details if material)		
	Net investing cash flows	(36)	(59)
1.13	Total operating and investing cash flows		
	(carried forward)	(1,252)	(992)

+ See chapter 19 for defined terms.

1.13	Total operating and investing cash flows (brought forward)	(1,252)	(992)
	Cash flows related to financing activities		
1.14	Proceeds from issues of shares, options, etc.		
1.15	Proceeds from sale of forfeited shares		
1.16	Proceeds from borrowings	1,295	1,045
1.17	Repayment of borrowings	(29)	(25)
1.18	Dividends paid		
	Net financing cash flows	1,266	1,020
	Net increase (decrease) in cash held	14	28
1.20 1.21	Cash at beginning of quarter/year to date Exchange rate adjustments to item 1.20	33	25
1.22	Cash at end of quarter	47	53

Payments to directors of the entity and associates of the directors Payments to related entities of the entity and associates of the related entities

		Current quarter \$A'000
1.23	Aggregate amount of payments to the parties included in item 1.2	
1.24	Aggregate amount of loans to the parties included in item 1.10	
1.25	Explanation necessary for an understanding of the transactions	

Nil

Non-cash financing and investing activities

2.1 Details of financing and investing transactions which have had a material effect on consolidated assets and liabilities but did not involve cash flows

Nil.

2.2 Details of outlays made by other entities to establish or increase their share in projects in which the reporting entity has an interest

Nil

Financing facilities available Add notes as necessary for an understanding of the position.

		Amount available \$A'000	Amount used \$A'000
3.1	Loan facilities		
3.2	Credit standby arrangements		

Estimated cash outflows for next quarter

4.1	Exploration and evaluation	\$A'000 600
4.1		000
4.2	Development	
4.3	Administration	100
4.4	Production	300
	Total	1,000

Reconciliation of cash

shown	ciliation of cash at the end of the quarter (as in the consolidated statement of cash flows) to the items in the accounts is as follows.	Current quarter \$A'000	Previous quarter \$A'000	
5.1 Cash on hand and at bank		47	53	
5.2	Deposits at call			
5.3	Bank overdraft			
5.4	Other (provide details)			
	Total: cash at end of quarter (item 1.22)	47	53	

Changes in interests in mining tenements

		Tenement reference	Nature of interest (note (2))	Interest at beginning of quarter	Interest at end of quarter
6.1	Interests in mining tenements relinquished, reduced or lapsed			100%	0%
6.2	Interests in mining tenements acquired or increased				

⁺ See chapter 19 for defined terms.

Issued and quoted securities at end of current quarter Description includes rate of interest and any redemption or conversion rights together with prices and dates.

		Total Number	Number Quoted	Issue price per security (see note 3) cents	Amount paid up per security (see note 3) cents
7.1	Preference +securities (description)				
7.2	 (a) Increases through issues (b) Decreases through returns of capital, buybacks, redemptions 				
7.3	⁺ Ordinary securities	190,143,665	190,143,665		
7.4	Changes during quarter (a) Increases through issues				
	(b) Decreases through returns of capital, buy- backs (See note 1)	-	-	-	-
7.5	<pre>+Convertible debt securities (description)</pre>	N/A	N/A		
7.6	Changes during quarter (a) Increases through issues	Nil	Nil		
	(b) Decreases through securities matured, converted				
7.7	Options (description and conversion factor)			Exercise price	Expiry date
7.8	Issued during quarter				
7.9	Exercised during quarter				
7.10	Expired during quarter				
7.11	Debentures (totals only)	N/A	N/A		1
7.12	Unsecured notes (totals only)	N/A	N/A		
	L				

Compliance statement

- 1 This statement has been prepared under accounting policies which comply with accounting standards as defined in the Corporations Act or other standards acceptable to ASX.
- 2 This statement does give a true and fair view of the matters disclosed.

Many Maryon

Mr. Gary C Morgan Chairman

31/10/2013

⁺ See chapter 19 for defined terms.